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Several networks exhibiting excellent performance in the field of com-
puter vision still suffer from the challenge of over-parameterization.
Over-parameterized networks have several parameters that cannot be
trained, owing to the poor backpropagation process caused by a small
L1 norm, and these parameters suppress the potential for network
performance improvement. This study proposes a kernel reactivation
method to improve network performance by reusing invalid kernels that
cannot be utilized for training because of the small L1 norm. The re-
sults indicate that the accuracy of Cifar-10 in ResNet-110 is improved
by 0.94% compared to the baseline, and the top-1 and top-5 accura-
cies of Tiny-ImageNet in ResNet-50 are improved by 1.87% and 1.03%
compared to the baseline, respectively.

Introduction: Recently, with the development of GPUs and hard-
ware accelerators, various convolutional neural networks (CNNs) have
achieved excellent performance in the field of computer vision, such as
classification, object detection, and segmentation [1–3]. Several stud-
ies are in progress to improve network performance, and most of these
approaches are generally accompanied by an increase in network size.
However, as the network size increases, the number of parameters also
increases, making the network over-parameterized [4, 5]. As a result,
most high-performance networks have over-parameterized problems and
in general, over-parameterized networks have several invalid parameters
that cannot be trained, owing to the small L1 norm [5].

A representative method for addressing the over-parameterized chal-
lenge is network pruning [4–7]. Network pruning is a network com-
pression method that does not degrade the network performance by re-
moving unnecessary parameters accompanied by an increase in network
size. However, in an environment with sufficient computing power sup-
port without limitation of power consumption, rather than pruning that
removes some invalid parameters with small L1 norm that has no ef-
fect on training, a reactivation method that improves the network perfor-
mance by changing these invalid parameters to valid parameters is fur-
ther required. Representative studies approached from this point of view
include weight evolution (WE) [8] and filter grafting (FG) [9] meth-
ods. WE [8] improves the network performance by reactivating invalid
weights (weights with low importance) with other values, and FG [9]
utilizes multiple networks to reactivate the values of all filters or lay-
ers to improve the network performance. However, since weights are the
same as simple constants, WE [8], which changes the value in units of
weights, has a limitation in not being able to represent features. FG [9]
has a limitation in that memory usage increases significantly, because
FG [9] utilizes at least two networks.

In this study, we propose a reactivation method that adopts the ker-
nel as a unit, which is the minimum structure that can extract fea-
tures, and there is no disadvantage with memory increase; thus, it can
achieve excellent results on the trade-off between the accuracy and
hardware resource. The contributions of this paper are summarized as
follows:

• By performing reactivation in kernel units, it is possible to reactivate
some parameters more sensitively than in filter or layer units, and it ad-
dresses the challenge of reactivation in weight units, in which features
cannot be extracted.

• The process of selecting an invalid kernel using the L1 norm is con-
ducted in two steps to accurately select the reactivation target. (1) The
process of selecting invalid filters by considering the model and layer
as a hybrid and (2) the process of adaptively selecting invalid kernels
in the selected invalid filters.

• We propose a reactivation method that can preserve the features ex-
tracted from the kernel by scaling unnecessary kernels with a low L1
norm while maintaining the ratio of weights in the kernel.

Background:

Pruning: Pruning methods are divided into three categories. First,
weight pruning [5] compresses the network by making unnecessary
weights to zero. This method has the best compression ratio; however,
it is difficult to achieve the actual acceleration effect because the net-
work structure does not change. Second, filter pruning [4, 6] compresses
the network by removing the unnecessary filters. Although this method
has the best effect of accelerating the inference speed owing to structural
changes, the compression ratio is relatively low. Third, kernel pruning [7]
using a kernel, intermediate unit between the weight and filter, achieves
excellent performance in both compression ratio and acceleration effect.
In addition, because pruning is performed with a kernel, which is the
smallest unit from which features can be extracted, it is the most sensi-
tive method for maintaining features.

Reactivation: Parameters with a small L1 norm do not perform well in
backpropagation during training and consequently do not significantly
affect the performance of CNNs. In pruning methods, the network is
compressed by removing these parameters; however, in an environment
where network performance is considered more important than network
compression, a reactivation method is required to use them again dur-
ing training. By reactivating invalid weights, kernels, and filters that had
little effect on the training process, the network performance can be im-
proved while maintaining the size of the actual network. WE [8], which
performs reactivation in units of weight, selects an invalid filter based
on the L1 norm, and then conducts reactivation by replacing only one
weight in all kernels of the invalid filter with the largest weight value
in all kernels in the most valid filter. However, because the minimum
structure that can extract the feature is the kernel, weight, which is a
simple constant value, cannot extract features. Specifically, WE [8] has
a limitation, in that only one weight changes for each kernel; therefore,
the features that the kernel can extract are collapsed and unstable. FG
[9] reactivates all layers or filters based on entropy while training several
networks simultaneously. However, this method has the limitation of un-
stable training if the values of all filters or layers are changed simulta-
neously, and there is a risk that a valid parameter changes. In addition,
because FG [9] must use at least two or more networks together, the
memory utilized for training is required at least twice and the training
time is also lengthened.

Proposed method: CNNs comprise a set of layers, where a layer is a set
of filters, filter is a set of kernels, and kernel is a set of weights. Although
various units can be used as units of reactivation, this study proposes
a kernel unit reactivation method rather than the filter and layer units.
Because the kernel is the smallest structure from which features can be
extracted, it is possible to reactivate the invalid parameters sensitively,
compared to the filter and layer units; therefore, it can be applied to
more parts and prevent feature collapse. This study uses the L1 norm
criterion, which is simple but widely utilized in pruning [10] to select
an invalid kernel for kernel reactivation. Based on the L1 norm, invalid
filters that satisfy two conditions (i.e., C1 and C2 presented below) are
selected, and invalid kernels in the selected invalid filters are adaptively
selected for reactivation by C3 below. This hybrid invalid kernel selection
has the advantage of stable training and there is no increase in memory
because there is no additional network deployment. After selecting an
invalid kernel, reactivation is performed for each certain epoch.

Condition 1 (C1): Importance of the filter in models: First, an invalid
filter is selected based on the L1 norm for kernel reactivation. Because
a small L1 norm parameter has little effect on the next layer or the final
network output, the L1 norm deserves the highest priority given to the
conditions for reactivation. Thus, the average L1 norm of all filters in the
model is calculated and sorted, and filters with the L1 norm below the hy-
perparameter threshold α(%) are selected as invalid filter candidates.
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Fig. 1 Overview of kernel reactivation that preserves the ratio of the weight
constituting the kernel

Condition 2 (C2): Importance of the filter in layers: If invalid filter can-
didates selected through C1 are concentrated in a specific layer, a signif-
icant portion of the corresponding layer can be reactivated. However, if
several parts of the layer are altered simultaneously, the training becomes
unstable and there is a risk of severe performance degradation. There-
fore, when choosing the invalid filter, it is necessary to choose carefully
so that the invalid filter is not too crowded in a few layers. In the pro-
posed method, the influence of the filter in the layer is used as a second
condition C2 to select an invalid filter by also measuring them based on
the L1 norm, and these filters are sorted in the order of the small L1
norm measured at each convolutional layer. The sorted filter below the
hyperparameter threshold β(%) is chosen as the secondary invalid filter
candidate group and a filter that satisfies both C1 and C2 is selected as
the final invalid filter.

Condition 3 (C3): Importance of the kernel in invalid filters: In the pro-
posed method, all kernels in the final invalid filter selected through C1

and C2 are sorted by the L1 norm, and kernels with an L1 norm smaller
than the hyperparameter threshold γ (%) are selected as invalid kernels
that have little effect on training. The selected invalid kernels can be
utilized for training again through reactivation at certain epochs, and
they may have more appropriate values than existing invalid values dur-
ing the remaining training process. However, because the learning rate
decreases as training progresses, there is a challenge that it becomes dif-
ficult to determine more appropriate values for an invalid kernel that has
conducted reactivation in a state where the learning rate is already low,
which leads to deterioration of network performance. Moreover, if the
γ is the same in all training processes, there is a risk that an invalid
kernel at the end of training with the low learning rate may cause degra-
dation of the model’s performance after reactivation. To address these
problems, in this study, we adopt the cosine annealing learning rate [11]
to adaptively set the γ based on the current learning rate, and the γ is
also designed to decrease in the form of a cosine graph along with the
learning rate as training proceeds. Finally, the invalid kernel, Kinv, that
performs reactivation can be expressed as follows:

Kinv = {k|k = C1 ∩ C2 ∩ C3}. (1)

All hyperparameters (α, β, γ ) should be adaptively set, considering the
dataset and network sizes.

Kernel reactivation: Except the 1 × 1 kernel, consist of several weights
and become the smallest structure from which features can be extracted.
To make an invalid kernel valid by reactivation, the average L1 norm of
the invalid kernel needs to be increased. In addition, to avoid collapsing
the features extracted by the kernel, it is also important to proceed with
reactivation while maintaining the ratio of each weight constituting the
kernel. Figure 1 illustrates the proposed kernel reactivation method. We
denote ‘Kn kernel’ to the n invalid kernels in each invalid filter and ‘Best
kernel’ to the kernel with the largest L1 norm in the filter containing
the invalid kernels. ‘Kn_L1_norm’ and ‘Best_L1_norm’ denote the L1
norm of ‘Kn kernel’ and ‘Best kernel’, respectively. While maintaining
the weight ratio in the kernel (i.e., the ratio in the 3 ×3 matrix in Fig-

Table 1. Accuracy of Cifar-10 according to β

Network ResNet-32

Threshold β 0.01 0.1 0.3 0.5 0.7 0.9

Acc.(%) 93.48 93.78 93.91 93.85 93.72 93.55

Table 2. Accuracy of Cifar-10 according to α and γ

Threshold α / γ

Network Metric Baseline 0.1/0.05 0.2/0.05 0.1/0.1 0.2/0.1

ResNet-32 Acc.(%) 93.30 93.82 93.91 93.80 93.76

ResNet-110 Acc.(%) 93.61 94.49 94.27 94.56 94.71

ure 1), we scale the ‘Kn kernel’ by the ratio of R which can be expressed
as follows:

R = Best_L1_norm

Kn_L1_norm
. (2)

In addition, in the proposed method, the reactivation is performed per
hyperparameter E epoch (i.e., at each E-th epoch) so that the reactiva-
tion can proceed according to the user environment. Using the proposed
kernel reactivation, it is possible to reuse the invalid kernel for training,
and prevent the collapse of the features extracted by the kernel by pre-
serving the ratio of the weights of the invalid kernel. In addition, the
proposed method has excellent adaptability, in that it only adds a negli-
gible amount of computation and can be adaptively applied with the E
cycle according to the network size and data size.

Experimental results: To evaluate the proposed method, we trained var-
ious ResNet models [12] with Cifar-10 [13] and Tiny-ImageNet [14] on
a single RTX-2080 GPU. The Cifar-10 dataset contains 50,000 train-
ing images and 10,000 test images for 10 classes. Tiny-ImageNet is a
subset of ImageNet and contains 100,000 training images and 10,000
validation images for 200 classes. The detailed environment settings for
Cifar-10 training are as follows: The training is based on the stochastic
gradient descent (SGD) optimizer with a batch size of 128, momentum
of 0.9, weight decay of 0.0005, overall training epoch of 200, learning
rate starting from 0.1, and cosine annealing scheduler is used. The envi-
ronment settings for Tiny-ImageNet training are as follows: A batch size
of 256 and 96 is used for ResNet18 and ResNet50, respectively, and a
weight decay of 0.0001 and an overall training epoch of 90 are used. The
rest of the settings are the same as the Cifar-10 environment setting. The
baseline in the following experimental results table denotes the network
trained from scratch without reactivation.

Tables 1–3 represent the results of evaluating ResNet-32 and ResNet-
110 on the Cifar-10 dataset according to the four hyperparameters (i.e.,
α, β, γ , E) required in the proposed method. Table 1 shows the exper-
imental result of β in C2 (i.e., the influence of the filter in the layer).
The remaining three hyperparameters, (α, γ , E), are set to (0.2, 0.05,
10), respectively. The experimental result indicates that the β derives
optimal results at 0.3. If β is too small, such as 0.01, the performance
improvement is not significant because of the little number of invalid
kernels reactivated, and if it is set too high like 0.9, the filter that has an
influence in the layer also becomes reactivated; hence, the performance
improvement is less. Table 2 represents the experimental results related
to the hyperparameter α and γ adopted in C1 and C3, respectively,
and the other two hyperparameters are evaluated with (β, E) = (0.3,
10). For ResNet-110, where the size of the network is relatively large,
(α, γ ) = (0.2, 0.1) shows the best performance, and for ResNet-32,
which is a relatively small network, (α, γ ) = (0.2, 0.05) has the highest
accuracy. This indicates that Cifar-10 has more invalid kernels in
ResNet-110 compared to ResNet-32, and it can be concluded that when
small-size datasets such as Cifar-10 are evaluated on multiple networks,
the number of invalid kernels increases as the network size increases.
However, if the data size is large (i.e., Tiny-ImageNet), the number of
invalid kernels may decrease; therefore, the hyperparameters should be
adaptively reduced. Table 3 shows the experimental results related to E,
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Table 3. Accuracy of Cifar-10 according to E

Threshold E

Network Metric Baseline 1 5 10 25 50

ResNet-32 Acc.(%) 93.30 93.31 93.35 93.91 93.71 93.56

ResNet-110 Acc.(%) 93.61 94.36 94.55 94.71 94.56 93.82

Table 4. Accuracy comparison on the Cifar-10 dataset

Method

Network Metric Baseline WE [8] FG [9] Proposed

ResNet-32 Acc.(%) 93.30±0.08 93.50±0.03 93.83±0.07 93.91±0.06

ResNet-110 Acc.(%) 93.61±0.15 94.00±0.07 94.73±0.11 94.71±0.10

Table 5. Accuracy comparison on the Tiny-ImageNet dataset

Method

Network Metric Baseline WE [8] FG [9] Proposed

ResNet-18 Top-1 Acc.(%) 60.31±0.07 60.72±0.12 61.12±0.15 61.32±0.09

Top-5 Acc.(%) 81.81±0.14 82.10±0.13 82.52±0.16 82.53±0.13

ResNet-50 Top-1 Acc.(%) 62.59±0.13 63.23±0.27 64.25±0.12 64.40±0.20

Top-5 Acc.(%) 83.65±0.20 83.77±0.23 84.12±0.21 84.55±0.15

ResNet-101 Top-1 Acc.(%) 64.90±0.59 65.71±0.58 66.66±0.41 66.72±0.40

Top-5 Acc.(%) 85.07±0.33 85.39±0.46 85.76±0.33 85.97±0.38

which is a hyperparameter representing the cycle of reactivation, and the
other three hyperparameters are set to α, β, γ ) = (0.2, 0.3, 0.1). In all
cases, E = 10 achieved the highest performance. When E = 1, reactiva-
tion is performed too frequently; therefore, value changes continuously
before the model is trained to the optimal value after reactivation. When
E = 50, it is difficult to expect a significant performance improvement
because of the less reactivation performed. Accordingly, hyperparameter
settings are required according to the appropriate network size and data
size. Empirically, hyperparameters settings (α, β, γ , E) = (0.2, 0.3, 0.1,
10) achieved the best performance; thus, we proceed with subsequent
experiments with optimal hyperparameter settings.

Table 4 presents the comparison results of the proposed and existing
methods on two networks, ResNet-32 and ResNet-110, with the Cifar-10
dataset. The hyperparameter setting is the same as that from Tables 1–3.
To provide a more convincing analysis of our results, we conduct three
experiments on each network and present the mean and standard devia-
tion of accuracy in Table 4. In ResNet-32, the proposed method achieved
the best performance of 93.91% with an accuracy increase of 0.61%
compared to the baseline. And in ResNet-110, the accuracy increased
by 1.1% compared to the baseline, and consequently, performance simi-
lar to that of FG [9], which uses twice the memory, is achieved. It should
be noted that that the increase in hardware resources, including mem-
ory usage required for training, causes environmental problems such as
a significant amount of CO2 emission as well as a cost burden [15].

Table 5 shows the comparison results for the mean and standard devi-
ation of accuracy with Tiny-ImageNet, a larger dataset than Cifar-10, in
ResNet-18, ResNet-50, and ResNet-101, respectively. Because the size
of the dataset increases compared to Cifar-10, hyperparameter setting is
performed as (α, β, γ , E) = (0.1, 0.3, 0.05, 10). The proposed method
improves the top-1 accuracy and top-5 accuracy by 1.06% and 0.72%
compared to the baseline in ResNet-18, and achieves a performance im-
provement of 1.87% and 1.03%, respectively, in ResNet50 compared
to the baseline. In ResNet-101, the proposed method also shows sig-
nificant accuracy enhancement compared to the baseline. Accordingly,
compared to the existing methods, the proposed method indicates supe-
rior performance improvement with less memory use in all networks. It
is noteworthy that the performance improvement effect of the proposed
method becomes more excellent as the size of the dataset increases.

Conclusion: In this study, we proposed a kernel reactivation method to
improve the performance of over-parameterized networks. The proposed
method can be applied to the network adaptively after selecting an in-
valid kernel to perform reactivation through three conditions, consid-
ering the learning rate. Compared to the existing reactivation method,
it exhibited the best performance in terms of trade-off of accuracy and
hardware resource.
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